Semantic Word Clusters Using Signed Normalized Graph Cuts
نویسندگان
چکیده
Vector space representations of words capture many aspects of word similarity, but such methods tend to make vector spaces in which antonyms (as well as synonyms) are close to each other. We present a new signed spectral normalized graph cut algorithm, signed clustering, that overlays existing thesauri upon distributionally derived vector representations of words, so that antonym relationships between word pairs are represented by negative weights. Our signed clustering algorithm produces clusters of words which simultaneously capture distributional and synonym relations. We evaluate these clusters against the SimLex-999 dataset (Hill et al., 2014) of human judgments of word pair similarities, and also show the benefit of using our clusters to predict the sentiment of a given text.
منابع مشابه
Semantic Word Clusters Using Signed Spectral Clustering
Vector space representations of words capture many aspects of word similarity, but such methods tend to produce vector spaces in which antonyms (as well as synonyms) are close to each other. For spectral clustering using such word embeddings, words are points in a vector space where synonyms are linked with positive weights, while antonyms are linked with negative weights. We present a new sign...
متن کاملSpectral Theory of Unsigned and Signed Graphs. Applications to Graph Clustering: a Survey
This is a survey of the method of graph cuts and its applications to graph clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment of the method of normalized graph cuts, a deeply original method due to Shi and Malik, including complete proofs. I also cover briefly the method of ratio cuts, and show how it can be viewed as a special case of normalized cuts. I in...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملNotes on Elementary Spectral Graph Theory. Applications to Graph Clustering Using Normalized Cuts
These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background on graphs and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian can be used to draw a graph. This is an attrac...
متن کاملClustering with Normalized Cuts is Clustering with a Hyperplane
We present a set of clustering algorithms that identify cluster boundaries by searching for a hyperplanar gap in unlabeled data sets. It turns out that the Normalized Cuts algorithm of Shi and Malik [1], originally presented as a graph-theoretic algorithm, can be interpreted as such an algorithm. Viewing Normalized Cuts under this light reveals that it pays more attention to points away from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.05403 شماره
صفحات -
تاریخ انتشار 2016